Aquatic Carbon Fluxes: Difference between revisions

From Climate Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<Blockquote>Integrated ecosystem carbon budgets incorporating both terrestrial and aquatic pathways are rare. This is largely due to the disciplinary nature of science, where methodological constraints tend to enhance the focus on specific components of the carbon balance (Falkowski and others 2000). At the catchment scale, there is currently little consensus or predictable patterns on the relative contribution of aquatic pathways in ecosystem carbon budgets. Consequently, the importance of both aquatic and terrestrial carbon processes and pools at the catchment scale remains underrepresented in discipline-focused ecosystem studies.<br><br>
<Blockquote>Integrated ecosystem carbon budgets incorporating both terrestrial and aquatic pathways are rare. This is largely due to the disciplinary nature of science, where methodological constraints tend to enhance the focus on specific components of the carbon balance (Falkowski and others 2000). At the catchment scale, there is currently little consensus or predictable patterns on the relative contribution of aquatic pathways in ecosystem carbon budgets. Consequently, the importance of both aquatic and terrestrial carbon processes and pools at the catchment scale remains underrepresented in discipline-focused ecosystem studies.<br><br>
The importance of fully integrated carbon budgets has now been demonstrated by numerous studies. Correct accounting of both aquatic and terrestrial carbon fluxes has shifted the source-sink status of ecosystems (Genereux and others 2013; Chu and others 2015; Lundin and others 2016). Local-scale studies (ecosystem specific at the catchment level) on ecosystem carbon budgets are useful for identifying specific carbon fluxes that contribute to the overall budget. For example, studies measuring both terrestrial and aquatic carbon fluxes were first reported for a lowland temperate peatland catchment (Billett and others 2004) and temperate forest in the early 2000s (Shibata and others 2005). There are now sufficient studies on terrestrial–aquatic carbon budgets at the catchment scale to allow for analyses of broad-scale patterns.<Ref>Webb, J.R., Santos, I.R., Maher, D.T. et al. The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review. Ecosystems 22, 508–527 (2019). https://doi.org/10.1007/s10021-018-0284-7</Ref></Blockquote>
The importance of fully integrated carbon budgets has now been demonstrated by numerous studies. Correct accounting of both aquatic and terrestrial carbon fluxes has shifted the source-sink status of ecosystems (Genereux and others 2013; Chu and others 2015; Lundin and others 2016). Local-scale studies (ecosystem specific at the catchment level) on ecosystem carbon budgets are useful for identifying specific carbon fluxes that contribute to the overall budget. For example, studies measuring both terrestrial and aquatic carbon fluxes were first reported for a lowland temperate peatland catchment (Billett and others 2004) and temperate forest in the early 2000s (Shibata and others 2005). There are now sufficient studies on terrestrial–aquatic carbon budgets at the catchment scale to allow for analyses of broad-scale patterns.<Ref>Webb, J.R., Santos, I.R., Maher, D.T. et al. The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review. Ecosystems 22, 508–527 (2019). https://doi.org/10.1007/s10021-018-0284-7</Ref></Blockquote>
= Amazon Rainforest =
<Blockquote>The land–ocean aquatic continuum (LOAC) is now well established as an important component of the global carbon (C) cycle (Ciais et al., 2013). Atmospheric C fixed in terrestrial ecosystems and wetlands can be lost through respiration, and stored in biomass and soil, but can also be transferred laterally to the LOAC as dissolved organic carbon (DOC), particulate organic carbon (POC) and dissolved CO2. Along the LOAC this C can in turn undergo biogeochemical transformations, be lost back to the atmosphere via CO2 evasion, transferred further downstream to estuaries and the coast or undergo sedimentation in wetlands (incl. lakes and reservoirs). It has been demonstrated at the catchment (Cole & Caraco, 1998) to global scale (Battin et al., 2009; Ciais et al., in review; Regnier et al., 2013), that these fluxes are important and should not be neglected in land C budgets.<Ref>https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14620?casa_token=nIxAOGMrvrgAAAAA%3AdcK_qdoV0-FghJxpDDfnhcDlONRKe9uyYN6H2c35Vj9kZy-l9vjNSpjAgKYYTji1LKXWwXRkOvUCtP_g</Ref></Blockquote>


= Sources =
= Sources =

Revision as of 21:29, 14 March 2023

Integrated ecosystem carbon budgets incorporating both terrestrial and aquatic pathways are rare. This is largely due to the disciplinary nature of science, where methodological constraints tend to enhance the focus on specific components of the carbon balance (Falkowski and others 2000). At the catchment scale, there is currently little consensus or predictable patterns on the relative contribution of aquatic pathways in ecosystem carbon budgets. Consequently, the importance of both aquatic and terrestrial carbon processes and pools at the catchment scale remains underrepresented in discipline-focused ecosystem studies.

The importance of fully integrated carbon budgets has now been demonstrated by numerous studies. Correct accounting of both aquatic and terrestrial carbon fluxes has shifted the source-sink status of ecosystems (Genereux and others 2013; Chu and others 2015; Lundin and others 2016). Local-scale studies (ecosystem specific at the catchment level) on ecosystem carbon budgets are useful for identifying specific carbon fluxes that contribute to the overall budget. For example, studies measuring both terrestrial and aquatic carbon fluxes were first reported for a lowland temperate peatland catchment (Billett and others 2004) and temperate forest in the early 2000s (Shibata and others 2005). There are now sufficient studies on terrestrial–aquatic carbon budgets at the catchment scale to allow for analyses of broad-scale patterns.[1]

Amazon Rainforest

The land–ocean aquatic continuum (LOAC) is now well established as an important component of the global carbon (C) cycle (Ciais et al., 2013). Atmospheric C fixed in terrestrial ecosystems and wetlands can be lost through respiration, and stored in biomass and soil, but can also be transferred laterally to the LOAC as dissolved organic carbon (DOC), particulate organic carbon (POC) and dissolved CO2. Along the LOAC this C can in turn undergo biogeochemical transformations, be lost back to the atmosphere via CO2 evasion, transferred further downstream to estuaries and the coast or undergo sedimentation in wetlands (incl. lakes and reservoirs). It has been demonstrated at the catchment (Cole & Caraco, 1998) to global scale (Battin et al., 2009; Ciais et al., in review; Regnier et al., 2013), that these fluxes are important and should not be neglected in land C budgets.[2]

Sources

  1. Webb, J.R., Santos, I.R., Maher, D.T. et al. The Importance of Aquatic Carbon Fluxes in Net Ecosystem Carbon Budgets: A Catchment-Scale Review. Ecosystems 22, 508–527 (2019). https://doi.org/10.1007/s10021-018-0284-7
  2. https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14620?casa_token=nIxAOGMrvrgAAAAA%3AdcK_qdoV0-FghJxpDDfnhcDlONRKe9uyYN6H2c35Vj9kZy-l9vjNSpjAgKYYTji1LKXWwXRkOvUCtP_g