Phytoremediation: Difference between revisions

From Climate Wiki
Jump to navigation Jump to search
(Created page with "Potentially toxic metals first interact with plants at the roots, where they are taken up by mass flow and diffusion. These metal pollutants are made bioavailable for plants through root secretion of metal-chelating molecules into the surrounding rhizosphere [30], metal reductase in the plasma membrane, and proton extrusion from roots [26]. Several mechanisms of phytoremediation exist [2,9,31,32]. In phytoextraction, soil contaminants are taken up through the roots and a...")
 
mNo edit summary
Line 1: Line 1:
=Definition=
==Historical==
==Technical==
Potentially toxic metals first interact with plants at the roots, where they are taken up by mass flow and diffusion. These metal pollutants are made bioavailable for plants through root secretion of metal-chelating molecules into the surrounding rhizosphere [30], metal reductase in the plasma membrane, and proton extrusion from roots [26]. Several mechanisms of phytoremediation exist [2,9,31,32]. In phytoextraction, soil contaminants are taken up through the roots and accumulate in the shoots [33,34]. In general, higher concentrations of metal in the growth environment result in higher accumulations in plant tissue [35–40]. Then, the contaminated shoot tissues are processed using a variety of disposal methods, such as heat and extraction treatments [41]. For instance, the tissues may be harvested and incinerated as hazardous waste, with the ash being discarded in landfills [42,43], or utilized for the re-extraction of trace elements [44,45]. The harvested biomass can alternatively be used as feedstock for [[biofuel]] production or pyrolyzed to form [[biochar]] [46–49]. Phytostabilization is a process in which metallic contaminants
Potentially toxic metals first interact with plants at the roots, where they are taken up by mass flow and diffusion. These metal pollutants are made bioavailable for plants through root secretion of metal-chelating molecules into the surrounding rhizosphere [30], metal reductase in the plasma membrane, and proton extrusion from roots [26]. Several mechanisms of phytoremediation exist [2,9,31,32]. In phytoextraction, soil contaminants are taken up through the roots and accumulate in the shoots [33,34]. In general, higher concentrations of metal in the growth environment result in higher accumulations in plant tissue [35–40]. Then, the contaminated shoot tissues are processed using a variety of disposal methods, such as heat and extraction treatments [41]. For instance, the tissues may be harvested and incinerated as hazardous waste, with the ash being discarded in landfills [42,43], or utilized for the re-extraction of trace elements [44,45]. The harvested biomass can alternatively be used as feedstock for [[biofuel]] production or pyrolyzed to form [[biochar]] [46–49]. Phytostabilization is a process in which metallic contaminants
are immobilized through root adsorption and metal precipitation and stabilized through complex formation or reduction [50]. The immobilization and stabilization of metals to a nontoxic form within the plant prevents interference with cellular metabolism [51]. Phytovolatilization converts potentially toxic metals to more-volatile forms that are removed to the atmosphere through transpiration [44].<ref name = "Placido + Lee 2022">Placido, D.F.; Lee, C.C. "Potential of Industrial Hemp for
are immobilized through root adsorption and metal precipitation and stabilized through complex formation or reduction [50]. The immobilization and stabilization of metals to a nontoxic form within the plant prevents interference with cellular metabolism [51]. Phytovolatilization converts potentially toxic metals to more-volatile forms that are removed to the atmosphere through transpiration [44].<ref name = "Placido + Lee 2022">Placido, D.F.; Lee, C.C. "Potential of Industrial Hemp for
Phytoremediation of Heavy Metals." ''Plants'' '''2022''', 11, 595. https://doi.org/10.3390/plants11050595</ref>
Phytoremediation of Heavy Metals." ''Plants'' '''2022''', 11, 595. https://doi.org/10.3390/plants11050595</ref>

Revision as of 18:33, 18 October 2022

Definition

Historical

Technical

Potentially toxic metals first interact with plants at the roots, where they are taken up by mass flow and diffusion. These metal pollutants are made bioavailable for plants through root secretion of metal-chelating molecules into the surrounding rhizosphere [30], metal reductase in the plasma membrane, and proton extrusion from roots [26]. Several mechanisms of phytoremediation exist [2,9,31,32]. In phytoextraction, soil contaminants are taken up through the roots and accumulate in the shoots [33,34]. In general, higher concentrations of metal in the growth environment result in higher accumulations in plant tissue [35–40]. Then, the contaminated shoot tissues are processed using a variety of disposal methods, such as heat and extraction treatments [41]. For instance, the tissues may be harvested and incinerated as hazardous waste, with the ash being discarded in landfills [42,43], or utilized for the re-extraction of trace elements [44,45]. The harvested biomass can alternatively be used as feedstock for biofuel production or pyrolyzed to form biochar [46–49]. Phytostabilization is a process in which metallic contaminants are immobilized through root adsorption and metal precipitation and stabilized through complex formation or reduction [50]. The immobilization and stabilization of metals to a nontoxic form within the plant prevents interference with cellular metabolism [51]. Phytovolatilization converts potentially toxic metals to more-volatile forms that are removed to the atmosphere through transpiration [44].[1]

  1. Placido, D.F.; Lee, C.C. "Potential of Industrial Hemp for Phytoremediation of Heavy Metals." Plants 2022, 11, 595. https://doi.org/10.3390/plants11050595